Structure and function of V-ATPases in osteoclasts: potential therapeutic targets for the treatment of osteolysis.
نویسندگان
چکیده
Excessive activity of osteoclasts becomes manifest in many common lytic bone disorders such as osteoporosis, Paget's disease, bone aseptic loosening and tumor-induced bone destruction. Vacuolar proton pump H+-adenosine triphosphatases (V-ATPases), located on the bone-apposed plasma membrane of the osteoclast, are imperative for the function of osteoclasts, and thus are a potential molecular target for the development of novel anti-resorptive agents. To date, the V-ATPases core structure has been well modeled and consists of two distinct functional domains, the V1 (A, B1, B2, C1, C2, D, E1, E2, F, G1, G2, G3, and H subunits) and V0 (a1, a2, a3, a4, d1, d2, c, c' e1, e2 subunits) as well as the accessory subunits ac45 and M8-9. However, the exact configuration of osteoclast specific V-ATPases remains to be established. Inactivation of subunit a3 leads to osteopetrosis in both mice and man because of non-functional osteoclasts that are capable of acidifying the extracellular resorption lacuna. On the other hand, inactivation of subunits c, d1 and ac45 results in early embryonic lethality, indicating that certain subunits, such as a3, are more specific to osteoclast function than others. In osteoclasts, V-ATPases also cooperate with chloride channel protein CLC-7 to acidify the resorption lacuna. In addition, development of V-ATPases inhibitors such as bafilomycin A1, SB 242784 and FR167356 that selectively target osteoclast specific V-ATPases remains a challenge. Understanding the molecular and cellular mechanisms by which specific subunits of V-ATPase regulate osteoclast function might facilitate the development of novel and selective inhibitors for the treatment of lytic bone disorders. This review summarizes recent research developments in V-ATPases with particular emphasis on osteoclast biology.
منابع مشابه
Prevention of Wear Particle-Induced Osteolysis by a Novel V-ATPase Inhibitor Saliphenylhalamide through Inhibition of Osteoclast Bone Resorption
Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening) is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis) by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve ...
متن کاملP 115: Potential Therapeutic Targets Related to Neuroinflammation in Treatment and Prevention of Autism
Autism spectrum disorder (ASD) is a mental condition, present from early childhood, characterized by great difficulty in communicating and forming relationships with others and using language. In the last four decades many studies have shown that immune responses in different regions of brain play an important role in ASD pathogenicity. A conservative estimate based on the research suggests tha...
متن کاملParticle Disease: A Current Review of the Biological Mechanisms in Periprosthetic Osteolysis After Hip Arthroplasty
BACKGROUND Inflammatory responses to wear debris cause osteolysis that leads to aseptic prosthesis loosening and hip arthroplasty failure. Although osteolysis is usually associated with aseptic loosening, it is rarely seen around stable implants. Aseptic implant loosening is a simple radiologic phenomenon, but a complex immunological process. Particulate debris produced by implants most commonl...
متن کاملThe effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling.
Wear particle-induced aseptic prosthetic loosening is one of the most common reasons for total joint arthroplasty (TJA). Extensive bone destruction (osteolysis) by osteoclasts plays an important role in wear particle-induced peri-implant loosening. Thus, strategies for inhibiting osteoclast function may have therapeutic benefit for prosthetic loosening. Here, we mimicked the process of magnesiu...
متن کاملGorham-Stout Disease of the Shoulder: Clinical, Pathologic and Therapeutic Considerations
Background: Gorham-Stout disease (GSD) is a rare skeletal disorder characterized by massive osteolysis of a bony area in the body. When it hits the shoulder, the patient is faced with a debilitating limitation in terms of motion, stability and quality of life. GSD etiology and pathology are unknown and, as a result, therapeutic modalities remain unclear. The aim of this paper is to explore and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Histology and histopathology
دوره 22 4 شماره
صفحات -
تاریخ انتشار 2007